Home page
Welcome to our Team website
The Cell Wall in Plant Immunity Team (led by Marc Somssich) is part of the Plant Cell Biology Research Group at the School of BioSciences of the University of Melbourne, Australia.
Our Team is funded by a DECRA grant from the Australian Research Council, with previous support from the German Research Foundation through a postdoctoral research fellowship, and seed funds from the Melbourne Botany Foundation and an Early Career Research Grant from the University of Melbourne.
We are interested in the Plant Cell Wall as the first defense barrier against fungal pathogens. Our work is focused on the plants Arabidopsis thaliana and Brassica napus (canola), as well as the fungal pathogen Fusarium oxysporum. For our work we employ modern fluorescence microscopy, especially a custom-built vertical-stage microscope setup which allows us to grow plants and fungi directly on the microscope stage while being imaged.
We have received funding from:
-
Jacob contributed to a paper on the structure of CESA3
Jacob has contributed to a new paper in Proceedings of the National Academy of Sciences of the United States of America on the structure of CESA3 with its substrate: Structure of Arabidopsis CESA3 catalytic domain with its substrate UDP-glucose provides insight into the mechanism of cellulose synthesis https://doi.org/10.1073/pnas.2024015118
17 March, 2021 -
New paper in Plant & Cell Physiology
Our work with Dmitry Suslov from Saint Petersburg State University is finally published in Plant & Cell Physiology. Have a look at: 'Brassinosteroids Influence Arabidopsis Hypocotyl Graviresponses through Changes in Mannans and Cellulose' https://doi.org/10.1093/pcp/pcab024
26 February, 2021 -
Liu contributed to a Spotlight Article for Molecular Plant
Liu has contributed to a Spotlight article for Molecular Plant, discussing recent findings by Yan et al. (2020), that pectins, more precisely β-1,4-galactans of rhamnogalacturonan I (RGI), play an important role in the plant's salt stress response. Salt with a sweet-tooth: Galactan synthesis impacts salt tolerance in Arabidopsis https://doi.org/10.1016/j.molp.2021.01.011
20 January, 2021 -
Slowly getting back to work
Restrictions have been slowly lifted over the past three weeks, and we are a allowed to work more again. Hopefully, things will go back to semi-normal in January.
14 December, 2020 -
Still no change to working hours…
Victoria is opening up after I-don't-remember-how-many-weeks-of-lockdown, but we here at the Plant Sciences division are still not allowed to increase our working hours.
2 November, 2020 -
Lockdown extended until October 26th
So the Corona-Lockdown has been extended until October 26th. At that point it will be seven months that we have not been allowed to do anything but essential tasks (keeping plant lines alive, etc.). A pretty bad year for everybody here at BioSciences UniMelb.
10 September, 2020 -
Back in Lockdown
Well, that didn't last long. We are back in lockdown with stage 4 restriction imposed in Melbourne.
7 August, 2020 -
The next Review from the Team is online in Annals of Botany
Following the 'Plant science's next top models' review with contribution from Marc, we can already announce the next review from the team in Annals of Botany. Liu is the first author on a new review discussing the links between phytohormone signalling and cellulose synthesis: Associations between phytohormones and cellulose biosynthesis in land plants Liu has covered abscisic acid, gibberellic acid, ethylene, salicylic acid …
5 July, 2020
Working on that…
The Cell Wall in Plant Immunity Team:
Marc Somssich
Marc studied biology at the University of Düsseldorf, Germany, where he received his Diploma (Master’s equivalent, though better) and the title Doctor rerum naturalium (Dr. rer. nat.; PhD-equivalent, but much better). He conducted the work for both, his Diploma and Dr., in the Insitute for Developmental Genetics, headed by Prof. Rüdiger Simon, which scandalously does not feature an alumni section on it’s webpage. During his time in Düsseldorf he investigated interaction-dynamics between different receptor-like protein-kinases involved in stem cell homeostasis or pathogen-perception, respectively. For this, he employed a variety of FRET-based fluorescence microscopy techniques in living plant cells. Once he had answered all open questions in the plant stem cell field, Marc moved to the University of Melbourne to join the Plant Cell Biology lab of Prof. Staffan Persson. Equipped with his own funding from the German Research Foundation, he was interested in how the cell wall is remodeled in response to a cell transitioning through its different developmental stages, or in response to external stimuli, such as gravitropism, soil salinity or a pathogenic attack. While the ‘developmental stages’ part of the project (the main part) unfortunately proved very problematic, the ‘gravitropism’ part resulted in a publication, the ‘soil salinity’ part in a PhD-position (see Liu’s work, below), and the ‘pathogen’ part resulted in the formation of the Cell Wall in Plant Immunity Team (who’s webpage you are viewing right now) via a DECRA grant from the Australian Research Council.
Marc is an Author for the Company of Biologist’s preLights Team and Assistant Features Editor for the journal Plant Physiology
Marc @ Google Scholar: https://scholar.google.com.au/citations?user=-YhIzdMAAAAJ&hl=en
Marc @ Twitter: https://twitter.com/somssichm
Marc @ ORCID: https://orcid.org/0000-0001-5092-6168
Marc @ ResearchGate: https://www.researchgate.net/profile/Marc_Somssich
Liu Wang
Liu studied food biotechnology at China Agricultural University in Beijing, China. For her Master’s thesis in the lab of A/Prof. Lin Shen she studied the drought stress response in tomato, establishing CRISPR-Cas9-mediated genome editing of tomato in her lab. Feeling the pressure to publish a first-author paper from her thesis, she somewhat overshot the mark and published three within a year. Having generated CRISPR-Cas9-edited tomato lines for different MAPKs to build the lab’s future research on, co-authorship on several future papers was secured and she therefore decided to move on. After receiving a PhD-scholarship from the Chinese Scholarship Council, she joined Prof. Staffan Persson’s Plant Cell Biology lab at the University of Melbourne to study salinity tolerance in plants, thereby building on her experience studying drought tolerance, but switching from the cool tomato plant to the general model Arabidopsis thaliana. Taking over a project from Marc, and being co-supervised by Staffan and Marc, she was automatically usurped by the newly formed Cell Wall in Plant Immunity Team. For her work, Liu focuses on the role of the COMPANION OF CELLULOSE SYNTHASE 1 (CC1) protein in maintaining cell wall synthesis under salt stress, and how it connects cellulose synthesis activity to cytoskeleton-dynamics. Furthermore, she has quickly become the resident expert for protein-immunoprecipitation experiments with subsequent proteomic analyses, creating protein-protein-interaction and phosphoproteomic data resources for the lab, thereby enabling new student projects and once again ensuring her place on the author list of several upcoming papers.
Liu @ Google Scholar: https://scholar.google.com/citations?user=W209SQoAAAAJ&hl=en&oi=sra
Liu @ Twitter: https://twitter.com/Liu_Wang1
Jacob Calabria
Jacob studied genetics for his bachelor’s degree at the University of Melbourne, and subsequently completed his Master’s thesis in the Drosophila lab of Dr. Michael Murray. For his project he identified genes regulating the mesenchymal to epithelial cell transition during development of the Drosophila melanogaster embryo midgut, as this cell transition is important not only for normal embryo development, but also has relevance for tissue repair and cancer metastasis. Following his time in the genetics department, Jacob assumed the role of a research technician for both, Prof. Staffan Persson’s Plant Cell Biology lab and Dr. Berit Ebert’s Plant Glycobiology lab, in order to gain more practical experience working in a molecular biology lab. He quickly earned a reputation as a highly skilled, talented and motivated technician, thereby qualifying to also work for Marc’s Cell Wall in Plant Immunity Team. As part of the Team, one of Jacob’s main objectives is to establish a transformation protocol for canola, in order to obtain fluorescent marker lines.
Hsiang-Wen Chen
Hsiang-Wen is interested in plant movement, such as tropisms and nastic movements, but especially circumnutation, which is involved in shoot climbing and soil penetration of the root. Her fascination with this topic motivated her to pursue a career in plant science, when she studied Biology at National Taiwan University, where she completed her Master’s thesis in the lab of Asst.Prof. Shu-Jen Wang in the Department of Agronomy. For her thesis, she focused on root movements in Oryza sativa, studying the hormone signalling pathways that control the light-induced wavy-root morphology seen in some varieties, and how environmental stimuli alter circumnutation patterns of seminal roots. Following the completion of her work, she moved on to the lab of A/Prof. Shih-Long Tu at the Institute of Plant and Microbial Biology, Academia Sinica, to expand her skill set by working as a research assistant before starting her PhD-studies. With A/Prof. Tu she helped to identify molecular mechanisms of light-regulated alternative splicing in Physcomitrium patens (or, TMFKAPhyscomitrella patents) using RNAseq. At this point, with research experience in two different labs, two first-author publications and plenty of experience with a variety of molecular biology methods and techniques, Hsiang-Wen decided to pursue her PhD-studies in Prof. Staffan Persson’s Plant Cell Biology lab at the University of Melbourne, via the university’s Graduate Research Scholarship program. Here, she returned to her original research-interest of studying plant movement, by investigating the role of the microtubule-binding protein CELLULOSE-MICROTUBULE UNCOUPLING 1 (CMU1) in control cell wall integrity during root skewing and soil penetration. Since her work is heavily dependent on live cell microscopy, using Spinning Disc and AiryScan Laser Scanning confocal microscopes, Staffan and Hsiang-Wen recruited Marc as co-supervisor for her PhD, making her a member of the Cell Wall in Plant Immunity Team.
Hsiang-Wen @ Google Scholar: https://scholar.google.com/citations?user=N6-uOeAAAAAJ&hl=en
Hsiang-Wen @ Twitter: https://twitter.com/HsiangWen_Chen
Cooperations:
Staffan Persson
Being part of Staffan‘s Plant Cell Biology lab, and being provided with office and lab space, as well as equipment, financial support and intellectual input from Staffan, one might say that our team is dependent on him.
Alexander Idnurm
Since none of us are experts in Mycology, or know how to handle pathogenic fungi, we are lucky to have the Mycology Team of A/Prof. Alexander Idnurm housed in our School of BioSciences building. Alex and his team are not just general experts for fungi, but are a leading lab for plant pathogenic fungi. Their main focus lies on Leptosphaeria maculans, the causal agent of blackleg disease in canola, for our joined project, however, they are more than happy to work with Fusarium oxysporum and have already created a whole suit of fluorescent marker lines for us to work with.
Biological Optical Microscopy Platform (BOMP)
A big part of the work in our team is based on fluorescent microscopy. Accordingly, BOMP is an important partner for us at the University. They provide us with modern, serviced microscopes, as well as image analysis software, know-how, trainings and workshops.
Google Scholar Publication lists for
Marc Somssich: https://scholar.google.com.au/citations?user=-YhIzdMAAAAJ&hl=en
Liu Wang: https://scholar.google.com/citations?user=W209SQoAAAAJ&hl=en&oi=sra
Jacob Calabria:
Hsiang-Wen Chen: https://scholar.google.com/citations?user=N6-uOeAAAAAJ&hl=en
Publications:
Qiao, Z., Lampugnani, E. R., Yan, X.-F., Khan, G. A., Saw, W. G., Hannah, P., Qian, F., Calabria, J., et al. (2021). Structure of Arabidopsis CESA3 catalytic domain with its substrate UDP-glucose provides insight into the mechanism of cellulose synthesis. PNAS: https://doi.org/10.1073/pnas.2024015118
Somssich, M., Vandenbussche, F., Ivakov, A., Funke, N., Ruprecht, C., Vissenberg, K., et al. (2021). Brassinosteroids Influence Arabidopsis Hypocotyl Graviresponses Through Changes In Mannans And Cellulose. Plant & Cell Physiology: https://doi.org/10.1093/pcp/pcab024 (previously on bioRxiv.: https://doi.org/10.1101/557777)
Wang, L., Lampugnani, E. R., Persson, S. (2021). Salt with a sweet-tooth: Galactan synthesis impacts salt tolerance in Arabidopsis.: https://doi.org/10.1016/j.molp.2021.01.011
Wang, L.*, Hart, B. E.*, Khan, G. A., Cruz, E. R., Persson, S., Wallace, I. S. (2020). Associations between phytohormones and cellulose biosynthesis in land plants.: https://doi.org/10.1093/aob/mcaa121 * = Equal contribution
Cesarino, I.*, Dello Ioio, R.*, Kirschner, G. K.*, Ogden, M. S.*, Picard, K. L.*, Rast-Somssich, M. I.*, and Somssich, M.*,# (2020). Plant Science’s Next Top Models. Annals of Botany.: https://doi.org/10.1093/aob/mcaa063 * = Equal Contribution ; # = Corresponding author
Somssich M. (2020) A short history of Vernalization. Zenodo: 1–28
https://doi.org/10.5281/zenodo.3660691
Somssich M. (2019) A short history of Plant Transformation. PeerJ Prepr.: 1–28.
https://doi.org/10.7287/peerj.preprints.27556
Lampugnani, E. R.*, Wink, R. H.*, Persson, S. and Somssich, M.# (2018). The Toolbox to Study Protein–Protein Interactions in Plants. Crit. Rev. Plant. Sci. https://doi.org/10.1080/07352689.2018.1500136. * = Equal Contribution ; # = Corresponding author
Somssich M. (2018) A short history of the CaMV 35S Promoter. PeerJ Prepr.: 1–16.
http://doi.org/10.7287/peerj.preprints.27096
Sakamoto S., Somssich M., Nakata M.T., Unda F., Atsuzawa K., Kaneko Y., et al. (2018). Complete substitution of a secondary cell wall with a primary cell wall in Arabidopsis. Nature Plants: https://doi.org/10.1038/s41477-018-0260-4.
Somssich M. (2018) A short history of Arabidopsis thaliana (L.) Heynh. Columbia-0. PeerJ Prepr.: 1–7.
http://doi.org/10.7287/peerj.preprints.26931
Lampugnani, E. R.*, Khan, G. A.*, Somssich, M.*, and Persson, S. (2018). Building a plant cell wall at a glance. J. Cell Sci. 131. https://doi.org/10.1242/jcs.207373. * = Equal Contribution
Brambilla, V., Martignago, D., Goretti, D., Cerise, M., Somssich, M., de Rosa, M., et al. (2017). Antagonistic Transcription Factor Complexes Modulate the Floral Transition in Rice. The Plant Cell 1, tpc.00645.2017. https://doi.org/10.1105/tpc.17.00645.
Somssich, M., and Simon, R. (2017). “Studying Protein–Protein Interactions In Planta Using Advanced Fluorescence Microscopy,” in Methods in Molecular Biology, ed. W. Busch (Springer Berlin Heidelberg), 267–285. https://doi.org/10.1007/978-1-4939-7003-2_17.
Breuer, D., Nowak, J., Ivakov, A., Somssich, M., Persson, S., and Nikoloski, Z. (2017). System-wide organization of actin cytoskeleton determines organelle transport in hypocotyl plant cells. Proc. Natl. Acad. Sci. U. S. A. https://doi.org/10.1073/pnas.1706711114.
Somssich, M., Je, B. Il, Simon, R., and Jackson, D. (2016). CLAVATA-WUSCHEL signaling in the shoot meristem. Development 143, 3238–3248. https://doi.org/10.1242/dev.133645
Somssich, M., Khan, G. A., and Persson, S. (2016). Cell Wall Heterogeneity in Root Development of Arabidopsis. Front. Plant Sci. 7, 1–11. https://doi.org/10.3389/fpls.2016.01242.
Liu, Z., Schneider, R., Kesten, C., Zhang, Y., Somssich, M., Zhang, Y., et al. (2016). Cellulose-Microtubule Uncoupling Proteins Prevent Lateral Displacement of Microtubules during Cellulose Synthesis in Arabidopsis. Dev. Cell 38, 305–15. https://doi.org/10.1016/j.devcel.2016.06.032.
Somssich, M., Bleckmann, A., and Simon, R. (2016). Shared and distinct functions of the pseudokinase CORYNE (CRN) in shoot and root stem cell maintenance of Arabidopsis. J. Exp. Bot. 67, 4901–4915. https://doi.org/10.1093/jxb/erw207.
Somssich, M., Ma, Q., Weidtkamp-Peters, S., Stahl, Y., Felekyan, S., Bleckmann, A., et al. (2015). Real-time dynamics of peptide ligand-dependent receptor complex formation in planta. Sci. Signal. 8, 1–9. https://doi.org/10.1126/scisignal.aab0598.
Lindner, M., Simonini, S., Kooiker, M., Gagliardini, V., Somssich, M., Hohenstatt, M. L., et al. (2013). TAF13 interacts with PRC2 members and is essential for Arabidopsis seed development. Dev. Biol. 379, 28–37. https://doi.org/10.1016/j.ydbio.2013.03.005.
Somssich, M.# , and Simon, R. (2012). “Peptides Regulating Apical Meristem Development,” in Signaling and Communication in Plants., eds. H. R. Irving and C. Gehring (Berlin, Heidelberg: Springer Berlin Heidelberg), 25–39. https://doi.org/10.1007/978-3-642-27603-3_2. # = Corresponding author
Following discussions I had with students (from undergrad to PhD-student level), I noticed that most young researchers were never taught anything about the historical context of our work. Context, however, still matters today. For example, many students are not aware of what the difference between the Arabidopsis lines Col-0, Col-1 and Landsberg is. Or why we are using the CaMV 35s promoter all the time, even though it is actually quite problematic to work with. For this reason, I have started to write ‘Short History’ articles on such aspects of plant science. To date, four chapters have been published:
Chapter 1 (2018): A short history of Arabidopsis thaliana (L.) Heynh. Columbia-0
PeerJ Prepr.: 1–7. http://doi.org/10.7287/peerj.preprints.26931
Chapter 2 (2018): A short history of the CaMV 35S Promoter
PeerJ Prepr.: 1–16. http://doi.org/10.7287/peerj.preprints.27096
Chapter 3 (2019): A short history of Plant Transformation
PeerJ Prepr.: 1–28. https://doi.org/10.7287/peerj.preprints.27556
Chapter 4 (2020): A short history of Vernalization
Zenodo: 1–28 https://doi.org/10.5281/zenodo.3660691
Some Online Feedback on the Short History articles (click to enlarge):
Address:
Marc Somssich
BioSciences 2, Room 301
School of BioSciences
University of Melbourne
Parkville, 3010, Victoria
Australia
Email (…unimelb.edu.au):
Marc: marc.somssich@ (…ending above)
Liu: wlw@student. (…ending above)
Jacob: calabria.j@ (…ending above)
Hsiang-Wen: hsiangc@student. (…ending above)
Twitter: